Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38667278

RESUMEN

Prediabetes and colorectal cancer (CRC) represent compelling health burdens responsible for high mortality and morbidity rates, sharing several modifiable risk factors. It has been hypothesized that metabolic abnormalities linking prediabetes and CRC are hyperglycemia, hyperinsulinemia, and adipokines imbalance. The chronic stimulation related to these metabolic signatures can favor CRC onset and development, as well as negatively influence CRC prognosis. To date, the growing burden of prediabetes and CRC has generated a global interest in defining their epidemiological and molecular relationships. Therefore, a deeper knowledge of the metabolic impairment determinants is compelling to identify the pathological mechanisms promoting the onset of prediabetes and CRC. In this scenario, this review aims to provide a comprehensive overview on the metabolic alterations of prediabetes and CRC as well as an overview of recent preventive and therapeutic approaches for both diseases, focusing on the role of the metabolic state as a pivotal contributor to consider for the development of future preventive and therapeutic strategies.


Asunto(s)
Neoplasias Colorrectales , Estado Prediabético , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Estado Prediabético/metabolismo , Animales , Factores de Riesgo
2.
Nutrients ; 16(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38201989

RESUMEN

In the context of nutrient-driven epigenetic alterations, food-derived miRNAs can be absorbed into the circulatory system and organs of recipients, especially humans, and potentially contribute to modulating health and diseases. Evidence suggests that food uptake, by carrying exogenous miRNAs (xenomiRNAs), regulates the individual miRNA profile, modifying the redox homeostasis and inflammatory conditions underlying pathological processes, such as type 2 diabetes mellitus, insulin resistance, metabolic syndrome, and cancer. The capacity of diet to control miRNA levels and the comprehension of the unique characteristics of dietary miRNAs in terms of gene expression regulation show important perspectives as a strategy to control disease susceptibility via epigenetic modifications and refine the clinical outcomes. However, the absorption, stability, availability, and epigenetic roles of dietary miRNAs are intriguing and currently the subject of intense debate; additionally, there is restricted knowledge of their physiological and potential side effects. Within this framework, we provided up-to-date and comprehensive knowledge on dietary miRNAs' potential, discussing the latest advances and controversial issues related to the role of miRNAs in human health and disease as modulators of chronic syndromes.


Asunto(s)
Diabetes Mellitus Tipo 2 , MicroARNs , Humanos , Diabetes Mellitus Tipo 2/genética , Estado Nutricional , Dieta , Epigénesis Genética , MicroARNs/genética
3.
Antioxidants (Basel) ; 12(6)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37372041

RESUMEN

Endothelial dysfunction plays a critical role in the progression of type 2 diabetes mellitus (T2DM), leading to cardiovascular complications. Current preventive antioxidant strategies to reduce oxidative stress and improve mitochondrial function in T2DM highlight dietary interventions as a promising approach, stimulating the deepening of knowledge of food sources rich in bioactive components. Whey (WH), a dairy by-product with a considerable content of bioactive compounds (betaines and acylcarnitines), modulates cancer cell metabolism by acting on mitochondrial energy metabolism. Here, we aimed at covering the lack of knowledge on the possible effect of WH on the mitochondrial function in T2DM. The results showed that WH improved human endothelial cell (TeloHAEC) function during the in vitro diabetic condition mimicked by treating cells with palmitic acid (PA) (0.1 mM) and high glucose (HG) (30 mM). Of note, WH protected endothelial cells from PA+HG-induced cytotoxicity (p < 0.01) and prevented cell cycle arrest, apoptotic cell death, redox imbalance, and metabolic alteration (p < 0.01). Moreover, WH counteracted mitochondrial injury and restored SIRT3 levels (p < 0.01). The SiRNA-mediated suppression of SIRT3 abolished the protective effects exerted by WH on the mitochondrial and metabolic impairment caused by PA+HG. These in vitro results reveal the efficacy of whey as a redox and metabolic modulator in the diabetic state and pave the way for future studies to consider whey as the source of dietary bioactive molecules with health benefits in preventive strategies against chronic diseases.

4.
Mol Ther Nucleic Acids ; 32: 371-384, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37128277

RESUMEN

Micro-RNAs (miRNAs) control gene expression at the post-transcriptional level and are widely involved in carcinogenesis, playing a role as both oncogenes and tumor suppressors. MiRNAs act as potent therapeutic weapon in cancer, but their potential therapeutic use is limited by the off-target effect due to their nonspecific distribution in normal tissues. The encapsulation of miRNAs in nanostructured carriers allows targeted effects aimed to destroy cancer cells, without affecting healthy tissues. Due to their small size and the optimal surface/size ratio, nanoparticles (NPs) envelop, protect, and release miRNAs, representing a promising strategy in cancer treatment. In the present review, we discuss the latest advances in the field of miRNA-encapsulating NPs in cancer, focusing on colorectal cancer and its metastatic forms, one of the most common malignancies worldwide.

5.
Redox Biol ; 62: 102681, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37003179

RESUMEN

MiR-27b is highly expressed in endothelial cells (EC) but its function in this context is poorly characterized. This study aims to investigate the effect of miR-27b on inflammatory pathways, cell cycle, apoptosis, and mitochondrial oxidative imbalances in immortalized human aortic endothelial cells (teloHAEC), human umbilical vein endothelial cells (HUVEC), and human coronary artery endothelial cells (HCAEC) exposed to TNF-α. Treatment with TNF-α downregulates the expression of miR-27b in all EC lines, promotes the activation of inflammatory pathways, induces mitochondrial alteration and reactive oxygen species accumulation, fostering the induction of intrinsic apoptosis. Moreover, miR-27b mimic counteracts the TNF-α-related cytotoxicity and inflammation, as well as cell cycle arrest and caspase-3-dependent apoptosis, restoring mitochondria redox state, function, and membrane polarization. Mechanistically, hsa-miR-27b-3p targets the 3'untranslated regions of FOXO1 mRNA to downregulate its expression, blunting the activation of the Akt/FOXO1 pathway. Here, we show that miR-27b is involved in the regulation of a broad range of functionally intertwined phenomena in EC, suggesting its key role in mitigating mithochondrial oxidative stress and inflammation, most likely through targeting of FOXO1. Overall, results reveal for the first time that miR-27b could represent a possible target for future therapies aimed at improving endothelial health.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , MicroARNs , Estrés Oxidativo , Humanos , Apoptosis/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inflamación/genética , MicroARNs/genética , MicroARNs/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
6.
Antioxidants (Basel) ; 11(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36009329

RESUMEN

Emerging evidence indicates that defects in sirtuin signaling contribute to impaired glucose and lipid metabolism, resulting in insulin resistance (IR) and endothelial dysfunction. Here, we examined the effects of palmitic acid (PA) treatment on mitochondrial sirtuins (SIRT2, SIRT3, SIRT4, and SIRT5) and oxidative homeostasis in human endothelial cells (TeloHAEC). Results showed that treatment for 48 h with PA (0.5 mM) impaired cell viability, induced loss of insulin signaling, imbalanced the oxidative status (p < 0.001), and caused negative modulation of sirtuin protein and mRNA expression, with a predominant effect on SIRT3 (p < 0.001). Restoration of SIRT3 levels by mimic transfection (SIRT3+) suppressed the PA-induced autophagy (mimic NC+PA) (p < 0.01), inflammation, and pyroptosis (p < 0.01) mediated by the NLRP3/caspase-1 axis. Moreover, the unbalanced endothelial redox state induced by PA was counteracted by the antioxidant δ-valerobetaine (δVB), which was able to upregulate protein and mRNA expression of sirtuins, reduce reactive oxygen species (ROS) accumulation, and decrease cell death. Overall, results support the central role of SIRT3 in maintaining the endothelial redox homeostasis under IR and unveil the potential of the antioxidant δVB in enhancing the defense against IR-related injuries.

7.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35328633

RESUMEN

Sirtuins (SIRTs) are a family of class III histone deacetylases (HDACs) consisting of seven members, widely expressed in mammals. SIRTs mainly participate in metabolic homeostasis, DNA damage repair, cell survival, and differentiation, as well as other cancer-related biological processes. Growing evidence shows that SIRTs have pivotal roles in chronic degenerative diseases, including colorectal cancer (CRC), the third most frequent malignant disease worldwide. Metabolic alterations are gaining attention in the context of CRC development and progression, with mitochondrion representing a crucial point of complex and intricate molecular mechanisms. Mitochondrial SIRTs, SIRT2, SIRT3, SIRT4 and SIRT5, control mitochondrial homeostasis and dynamics. Here, we provide a comprehensive review on the latest advances on the role of mitochondrial SIRTs in the initiation, promotion and progression of CRC. A deeper understanding of the pathways by which mitochondrial SIRTs control CRC metabolism may provide new molecular targets for future innovative strategies for CRC prevention and therapy.


Asunto(s)
Neoplasias Colorrectales , Sirtuina 3 , Sirtuinas , Animales , Neoplasias Colorrectales/metabolismo , Homeostasis , Mamíferos/metabolismo , Mitocondrias/metabolismo , Sirtuina 3/metabolismo , Sirtuinas/metabolismo
8.
Sci Signal ; 14(690)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230209

RESUMEN

Inorganic polyphosphates (polyPs) are linear polymers composed of repeated phosphate (PO4 3-) units linked together by multiple high-energy phosphoanhydride bonds. In addition to being a source of energy, polyPs have cytoprotective and antiviral activities. Here, we investigated the antiviral activities of long-chain polyPs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In molecular docking analyses, polyPs interacted with several conserved amino acid residues in angiotensin-converting enzyme 2 (ACE2), the host receptor that facilitates virus entry, and in viral RNA-dependent RNA polymerase (RdRp). ELISA and limited proteolysis assays using nano- LC-MS/MS mapped polyP120 binding to ACE2, and site-directed mutagenesis confirmed interactions between ACE2 and SARS-CoV-2 RdRp and identified the specific amino acid residues involved. PolyP120 enhanced the proteasomal degradation of both ACE2 and RdRp, thus impairing replication of the British B.1.1.7 SARS-CoV-2 variant. We thus tested polyPs for functional interactions with the virus in SARS-CoV-2-infected Vero E6 and Caco2 cells and in primary human nasal epithelial cells. Delivery of a nebulized form of polyP120 reduced the amounts of viral positive-sense genomic and subgenomic RNAs, of RNA transcripts encoding proinflammatory cytokines, and of viral structural proteins, thereby presenting SARS-CoV-2 infection in cells in vitro.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Polifosfatos/farmacología , SARS-CoV-2/efectos de los fármacos , Administración por Inhalación , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Antivirales/administración & dosificación , Antivirales/química , COVID-19/metabolismo , COVID-19/virología , Células CACO-2 , Chlorocebus aethiops , ARN Polimerasa Dependiente de ARN de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Citocinas/metabolismo , Células HEK293 , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Técnicas In Vitro , Modelos Biológicos , Simulación del Acoplamiento Molecular , Nebulizadores y Vaporizadores , Polifosfatos/administración & dosificación , Polifosfatos/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteolisis/efectos de los fármacos , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Homología de Secuencia de Aminoácido , Transducción de Señal/efectos de los fármacos , Células Vero , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...